
The Open Stacks Problem

An automated modelling case study

Ozgur Akgun, Ian Miguel, Christopher Jefferson
{ozgur,ianm,caj}@cs.st-andrews.ac.uk

School of Computer Science, University of St. Andrews, UK

Abstract. This paper presents a case study of automated modelling

using Essence and Conjure. The problem we study is the open stacks

problem[5]. We start with a naive problem specification and show how

Conjure generates a selection of constraint programming models auto-

matically. After observing the results, we modify the original problem

specification to generate better models. Finally, we further improve the

generated models by introducing a new representation for partial and

injective function variables. The newly added representation is useful for

not only this specific problem but also any other problem with a similar

structure.

1 Introduction

This paper presents a case study of automated modelling using Conjure. Con-
jure is an automated modelling tool whose inputs are a high level problem spec-
ification given in Essence[2], and a collection of refinement rules. It performs
problem class level transformations to generate multiple Essence0[4] models for
the input problem specification.

Often referred to as the modelling bottleneck, correctly modelling a given
problem is not a trivial task. Furthermore, producing a good model for a given
problem is an active area of research. Even for constraint modelling experts,
producing a good model remains an art rather than a science – we are far from
fully understanding when a given model is better than another one.

In contrast to many existing languages for constraint modelling which only
support decision variables of primitive types (boolean and integer), Essence
provides complex types for decision variables and parameters to ease modelling.
In order to tackle the challenge of producing good models, Conjure takes a
rather unique approach. The applied transformations are extensible by design,
to be able to capture new modelling idioms as they are discovered by human
experts. Furthermore, the objective of the system is to generate all possible
models using the available refinement rules. The output is not a single random
model, instead it is a portfolio of models ready for further investigation.

The typical use case for a problem owner doesn’t require any alterations to
the refinement rules. The existing refinement rules are capable of refining all
types and expressions found in Essence to generate valid models. Refinement

Proceedings of CSCLP 2011

15

rule authoring is only required when a new variable representation or a new
transformation is discovered.

The rest of the paper is structured as follows. We first give a precise descrip-
tion of the open stacks problem together with a simple example. In section 2, we
give the architecture of the Conjure system. Section 3 gives a precise problem
specification and demonstrates how the system operates on it with the help of
some example refinement rules. Section 4 builds on an observation specific to the
problem at hand, and improves the problem specification. Finally, we compare
the two specifications and conclude.

1.1 The problem

Taken from the Constraint Modelling Challenge 2005 proceedings[5]:

A manufacturer has a number of orders from customers to satisfy; each
order is for a number of di↵erent products, and only one product can
be made at a time. Once a customers order is started (i.e. the first
product in the order is being made) a stack is created for that customer.
[Each customer places exactly one order.] When all the products that a
customer requires have been made, the order is sent to the customer, so
that the stack is closed. Because of limited space in the production area,
the maximum number of stacks that are in use simultaneously, i.e. the
number of customer orders that are in simultaneous production, should
be minimised.

For clarity, we introduce a simple example consisting of 5 products and 5
customers. In Fig 1, the demand matrix, D, is given. Every row in this ma-
trix correspond to a single customer, and every column correspond to a single
product. Dij is 1 i↵ ci placed an order for pj .

p1 p2 p3 p4 p5

c1 1 1 0 1 0

c2 0 1 0 1 1

c3 0 0 1 1 0

c4 0 0 1 0 0

c5 0 0 1 0 0

Fig. 1. D, the demand matrix

p1 p2 p3 p4 p5

c1 1 1 1 1 0

c2 0 1 1 1 1

c3 0 0 1 1 0

c4 0 0 1 0 0

c5 0 0 1 0 0

Fig. 2. O, the open stacks matrix

In order to calculate the number of stacks needed for this instance, we use
an intermediate matrix of boolean variables, the open stacks matrix shown in
Fig 2. Oij is 1 i↵ a stack for ci is open at the time of producing pj .

Using this example and without permuting the order of production, at the
time of producing p3, all 5 stacks are needed. However, as can be seen in Fig 3
changing the order of production to (p1, p2, p4, p5, p3) at most 3 stacks are needed
at any time.

Proceedings of CSCLP 2011

16

p1 p2 p4 p5 p3

c1 1 1 1 0 0

c2 0 1 1 1 0

c3 0 0 1 1 1

c4 0 0 0 0 1

c5 0 0 0 0 1

Fig. 3. The optimal solution using only 3 stacks

2 The architecture of Conjure

Conjure 1.0 is structured like a compiler. It operates by applying the given
refinement rules to the input problem specification in several reentrant phases.
The refinement rules are annotated by a precedence level; rules with higher
precedence are always applied before the others. The rules residing at the same
precedence level are applied simultaneously to generate multiple output models.
Once a rule is applied, the process continues from the highest precedence level.

There are two main kinds of refinement rules, rules to select a concrete rep-
resentation for an Essence type, and rules to transform Essence expressions.

The pipeline starts with parsing, validating the input, and type-checking. Af-
ter these foundation phases, it prepares the input specification for, and performs,
refinement, and does some housekeeping:

1. Parsing
2. Validation

- Are all identifiers defined?

- Check consistency of declarations. e.g. a function variable cannot be de-

clared both total and partial.

3. Type Checking
4. Refinement
5. Model Presentation

Phases 1–3 are foundational, while Phase 5 aids perspicuity. Phase 4 is the
core of the refinement process, and is briefly discussed below. It consists of
multiple reentrant levels: following each rule application the process returns to
Phase 4i) in case the result of the rule requires the attention of any of the other
levels. We summarise Phase 4:

4i) Partial Evaluation Conjure 1.0 contains a partial evaluator forEssence.
This not only simplifies the output models, but also saves the system from
applying rules to expressions that can readily be evaluated.

4ii) Representation Selection Refinement of an abstract expression depends
crucially on the representation of the abstract decision variables it involves.
Hence, it is natural to select decision variable representations first. This also
simplifies the generation of channelling constraints (Level iii) considerably.
Typically structural constraints are added to the variables in the concrete
representation to ensure that the abstract variable is properly represented.

Proceedings of CSCLP 2011

17

4iii) Auto-Channelling When an abstract decision variable appears in multi-
ple constraints, it can also have multiple representations in a single model (to
suit each constraint), in which case channelling constraints [1] are necessary
to maintain consistency among these di↵erent representations. Following [3],
channelling constraints are generated simply by constraining the di↵erent
representations of each abstract variable so that they represent the same
abstract object. The resultant equality constraints are refined in the same
way as any other constraint in the specification.

4iv) Expression Refinement Having decided on the representation of each
abstract decision variable, it remains to refine the expressions that contain
them.

In order to produce multiple models, refinement branches in two places in
Phase 4: Representation Selection and Expression Refinement. Depending on
the rules available in the rule base, each abstract decision variable and each
expression can be refined in several di↵erent ways.

3 A precise problem description

In this section we give a precise problem description, first in English and then
in Essence.

Given a number of customers, a number of products, and a demand re-
lation between customers and products, find a permutation of products,
such that if production is done in this order the number of stacks needed
at any time is minimised. A stack is opened for every customer when the
first product they demand is produced and it is closed when there are
no more products for them to be produced.

The Essence problem specification (Fig 4) is very close to the English de-
scription and should be readily understandable. The problem is parameterised
over two integers and one 2 component relation. Three letting statements are
used to bind names to commonly used domains. Notice, two of these names,
PRODUCT and TIMESLOT, are actually bound to the same domain; di↵erent
names are introduced to capture the di↵erent meanings and ease understanding
in the rest of the problem specification.

The decision central to the problem is finding a permutation of the given
products, hence the function variable named timeof. It is decorated with two at-
tributes; total to ensure every value in the domain set is assigned to a value from
the range set, and injective to ensure that the function preserves distinctness.

The function variable named stackOpen, mapping every customer to a pair
of time slots, is used to mark the stack opening and closing times for every
customer. The relation variable isOpenStack is only used to ease the calculation
of nbStacks, the maximum number of stacks needed at any time slot.

First two constraints, lines 16 and 17 in Fig 4, constrain a stack for a customer
to remain open for the duration of all the demand points for that customer. The

Proceedings of CSCLP 2011

18

1 language Essence 2.0

2
3 given nbProducts , nbCustomers: int (1..)

4 letting PRODUCT be domain int (1.. nbProducts),

5 TIMESLOT be domain int (1.. nbProducts),

6 CUSTOMER be domain int (1.. nbCustomers)

7 given demand : relation of (CUSTOMER * PRODUCT)

8 find timeof : function (total , injective) PRODUCT ! TIMESLOT

9 find stackOpen : function (total) CUSTOMER ! tuple (TIMESLOT ,TIMESLOT)

10 find isOpenStack : relation of (CUSTOMER * PRODUCT)

11 find nbStacks : PRODUCT

12
13 minimising nbStacks

14
15 such that

16 forall (c,p) : demand . stackOpen(c)[0] timeof(p),

17 forall (c,p) : demand . stackOpen(c)[1] � timeof(p),

18
19 forall c : CUSTOMER . forall t : TIMESLOT .

20 isOpenStack(c,t) = (stackOpen(c)[0] t ^
21 stackOpen(c)[1] � t),

22
23 forall t : TIMESLOT .

24 nbStacks � |isOpenStack(_,t)|

Fig. 4. Problem specification in Essence

universal quantification over demand, gives only those customer–product pairs
for which a demand exists. The third constraint simply relates the function
variable to the relation variable such that isOpenStack(c,t) is true i↵ a stack for
customer c is open at time slot t.

3.1 Refinement

The process of auto-modelling the given problem specification is explained in
this section. There are 3 decision variables and 1 parameter requiring refinement.
Conjure rule-base contains 2 refinement options for relation variables, and 2
refinement options for function variables. Using all the existing refinement rules,
at least 16 valid models can be generated; some with multiple representations
for a single decision variable and with the appropriate channelling constraints
in place. Here, we only give those refinement rules necessary to generate one of
the resultant models, arguably the best one.

All Conjure rules adhere to a single template:

<pattern> [; <output>]*
[where <guards>]
[letting <local identifiers>]

A rule matches against pattern, producing one or more outputs provided the
guards are satisfied. Local identifiers are used for concision and to identify new
variables created by the refinement process.

First, we start by giving the necessary representation selection rules. A rep-
resentation selection rule, matches with an Essence type, and outputs 3 things:
the name of the representation selected, the concrete representation in the form

Proceedings of CSCLP 2011

19

of a valid Essence type, and any structural constraints to be added when this
rule is applied. Every output is preceded by a ; sign. The structural constraints
component is optional, it can be omitted if the type refinement doesn’t imply
any new constraints.

function (total , injective) a ! b ; Function1DMatrix

; matrix indexed by [a] of b

; alldifferent(refn)

where a :: int

Fig. 5. Representation selection rule for a total and injective function variable.

Fig 5 gives a representation selection rule for total and injective function
variables. A decision variable with a matching type can be refined to a one-
dimensional matrix with an alldi↵erent posed on it. Here, refn is a special oper-
ator which returns the newly created variable after applying this representation
selection rule.

function (total) a ! b ; Function1DMatrix

; matrix indexed by [a] of b

where a :: int

Fig. 6. Representation selection rule for a total function variable.

Fig 6 gives a representation selection rule for total function variables. Similar
to Fig 5, a decision variable with a matching type can be refined to a one-
dimensional matrix. Notice, we don’t pose an alldi↵erent constraint in this case,
since the function variable is not marked to be injective.

relation of (a * b) ; Relation2D

; matrix indexed by [a,b] of bool

where a :: int , b :: int

Fig. 7. Representation selection rule for a 2-component relation.

Fig 7 gives a representation selection rule for 2-component relation variables.
Both the parameter demand and decision variable isOpenStack will use this
representation during refinement.

Fig 8 gives a refinement rule which fires while refining the first two con-
straints, on lines 16 and 17 in Fig 4. The pattern on the left hand side of the ;

sign, matches with a universal quantification over a 2-component matrix. k in
the pattern, matches with the body of the quantification. The returned expres-
sion contains a guard in the form of an logical implication on k, ensuring k is
only ever applied for values found in the relation rel.

There are some important operators used in this refinement rule:

(::) does type checking. It accepts two arguments, and returns true if the types
of the parameters are same, and false otherwise. Each parameter can be an
Essence expression or an Essence types.

repr returns the selected representation for an atomic expression. It can only be
used in the where clause of a refinement rule and fails the application of the
rule if a representation is not chosen for its argument.

Proceedings of CSCLP 2011

20

forall (i,j) : rel . k

; forall i : ri .

forall j : rj .

m[i,j]) k

where rel :: relation of (int ,int),

repr(rel) = Relation2D

letting m be refn(rel),

ri be indices(m)[0],

rj be indices(m)[1]

Fig. 8. Refinement rule for quantification over a 2-component relation with Relation2D
as the selected representation.

refn returns the concrete representation for an atomic expression.
indices returns the indexing domains of a matrix. It returns a tuple containing ev-

ery indexing domain in their respective positions. Individual indices can be
projected out of the tuple using the tuple indexing operator [].

|rel(_,b)| ; sum (i,j) : rel . (j = b) * rel(i,j)

Fig. 9. Horizontal refinement rule for cardinality of relation projection.

This rule given in Fig 9 is used while refining the last constraint, starting
on line 23 in Fig 4. It is called a horizontal rule, because it doesn’t refer to the
representation of any decision variable using the repr operator, nor it requests
the refinement of a decision variable using the refn operator. The existence of
horizontal rules are very important to the scalability of the rules database. A
vertical rule needs to be added for every newly added variable representation,
whereas horizontal rules can be used independently of the chosen representation.

Notice, since horizontal rules do not do type refinement, the resultant ex-
pression needs further refinement rule applications. In this specific case, a rule
very similar to that of Fig 8 will be applied to refine the relation variable to a
matrix.

Given refinement rules are su�cient to produce the output model given in
Fig 11. Although automatically generated from a problem specification, the
model is very close to what a human modeller would write, once the modelling
decisions are decided upon. Except the last constraint, starting on line 28, which
would have been written as in Fig 10. This is due to using a horizontal rule to
transform the cardinality constraint to a nested sum. Luckily, in this case and in
many other cases where we consider the use of horizontal rules to be beneficial,
the two forms are identical modulo instantiation. Any tool which instantiates
the problem class model with given parameters will generate exactly the same
constraints.

forall t : TIMESLOT .

nbStacks � sum c : CUSTOMER . isOpenStack[c,t]

Fig. 10. The last constraint of Fig 11, slightly modified.

Proceedings of CSCLP 2011

21

1 language ESSENCE
0

1.0

2
3 given nbProducts , nbCustomers : int (1..)

4 letting PRODUCT be domain int (1.. nbProducts),

5 TIMESLOT be domain int (1.. nbProducts),

6 CUSTOMER be domain int (1.. nbCustomers)

7 given demand : matrix indexed by [CUSTOMER ,PRODUCT] of bool

8 find timeof : matrix indexed by [PRODUCT] of TIMESLOT

9 find stackOpened : matrix indexed by [CUSTOMER] of TIMESLOT

10 find stackClosed : matrix indexed by [CUSTOMER] of TIMESLOT

11 find isOpenStack : matrix indexed by [CUSTOMER ,TIMESLOT] of bool

12 find nbStacks : PRODUCT

13
14 minimising nbStacks

15
16 such that

17 alldifferent(timeof),

18
19 forall c : CUSTOMER . forall p : PRODUCT .

20 demand[c,p]) stackOpened[c] timeof[p],

21
22 forall c : CUSTOMER . forall p : PRODUCT .

23 demand[c,p]) stackClosed[c] � timeof[p],

24
25 forall c : CUSTOMER . forall t : TIMESLOT .

26 isOpenStack[c,t] = ((stackOpened[c] t) ^ (t stackClosed[c])),

27
28 forall t : TIMESLOT .

29 nbStacks � sum t2 : TIMESLOT . (

30 (t = t2) *

31 (sum c : CUSTOMER . isOpenStack[c,t])

32)

Fig. 11. The auto-generated model for the problem specification given in Fig 4.

4 Better understanding the problem

As noted in [5], an important observation about the problem enables us to dras-
tically shrink the problem size.

Observation. For every product p, if there exists another product p
0 such

that the set of customers demanding p is a subset of the set of customers de-
manding p

0, p doesn’t need to be considered while sequencing products.
For example, in the instance given at Fig 1, products p1, p2 and p5 do not

need to be considered while sequencing the rest of the products. Namely, only
sequencing p3 and p4 and minimising the required number of stacks for these
two products is enough to optimally solve the original problem.

The observation means we can preprocess the data file to remove such prod-
ucts, and use the problem specification we already have. Alternatively, we can
encode the property in the problem specification; enabling us to leverage from
the observation while still using Essence and staying at the problem class level.

In the light of this observation, instead of finding a total mapping from
products to time-slots, we need to search for a partial mapping. To accomplish
this, we simply modify the attributes of timeof to include partial instead of total.

find timeof : function (partial , injective) PRODUCT ! TIMESLOT

Proceedings of CSCLP 2011

22

timeof being partial function means some products will be assigned to time-
slots and others won’t. Since the function is still injective, it preserves distinct-
ness through assigned time-slots.

Two constraints are needed to statically compute those products which need
sequencing.

forall p1 : PRODUCT . (

(exists p2 : PRODUCT . (p1 6= p2) ^ (demand(_,p1) ✓ demand(_,p2)))

) (p1 62 defined(timeof))

),

forall p1 : PRODUCT . (

(forall p2 : PRODUCT . (p1 6= p2)) !(demand(_,p1) ✓ demand(_,p2)))

) (p1 2 defined(timeof))

),

The operator defined works on function variables and returns the set of
values the function is defined on.

Only the second and third constraints from the original problem specification
(Fig 4) need to be modified slightly.

forall (c,p) : demand .

p 2 defined(timeof)) stackOpened(c) timeof(p),

forall (c,p) : demand .

p 2 defined(timeof)) stackClosed(c) � timeof(p),

Other constraints remain unchanged.
The changes made on the problem specification arise from a better under-

standing of the problem. Although this may be perceived as pushing the mod-
elling bottleneck up to the Essence level, it should be noted that the modifica-
tions are done at problem specification level. Modelling decisions, such as how to
model a partial and injective function variable, do not need to be considered. We
improve the problem specification merely by changing how a decision variable is
declared.

4.1 Refinement

Conjure can already refine the modified problem description to valid constraint
models. In order to be as generic as possible, the existing refinement uses two
1-dimensional matrices to represent a partial and injective function variable.
Using this representation (Fig 12), the constraint to pose distinctness is highly
ine�cient.

In the specific case of a function variable mapping integers to integers, we
can do better. Instead of introducing a boolean variable for every possible map-
ping, we can introduce a dummy value in the mapped domain, and use alldif-

ferent except to ensure distinct assignments (Fig 13).

Proceedings of CSCLP 2011

23

function (partial , injective) a ! b

; PartialFunction1DMatrix

; matrix indexed by [a] of tuple (bool ,b)

; forall i,j : a . (

((refn[i][0] = true) ^ (refn[j][0] = true))

) (refn[i][1] 6= refn[j][1])

)

where a :: int

Fig. 12. Generic representation for partial and injective function variables.

function (partial , injective) a ! int (1..b)

; PartialFunctionIntInt

; matrix indexed by [a] of int (0..b)

; alldifferent except(refn ,0)

where a :: int

Fig. 13. A specific representation for function variable mapping integers to integers.

This is a very specific variable representation, yet it occurs very often. In
the process of modelling the open stacks problem, this specific case is discovered
and proved to be highly e�cient. Future problems with a similar structure will
benefit from it for free.

The refinement rule in Fig 14 is needed to fully refine the modified problem
specification using the newly added representation.

e 2 defined(fn) ; refn(fn)[e] > 0

where repr(fn) = PartialFunctionIntInt

Fig. 14. A new refinement rule is necessary to fully refine the problem specification.

The result of refining the modified problem specification is given in Fig 15.

5 Experimental results

We ran experiments on the instances provided by [5]. Search node counts and
search times are recorded for over 700 problem instances for both the original
and the improved model.

The plots given in Fig 16 and Fig 17 are comparing the two models by the
number of search nodes and by actual search time respectively. The instances
are ordered by the amount of gain. Both vertical axes are log-scaled.

Comparing constraint models is not a trivial task. Given two problem class
models, one can be better than the other for some parameter instantiations and
worse for some others.

Number of search nodes used by the underlying solver is one possible measure
for comparing two constraint models. It gives a good understanding as long as

Proceedings of CSCLP 2011

24

language ESSENCE ’ 1.0

given nbProducts : int (1..)

letting PRODUCT be domain int (1.. nbProducts)

letting TIMESLOT be domain int (1.. nbProducts)

given nbOrders : int (1..)

letting CUSTOMER be domain int (1.. nbOrders)

given demand : matrix indexed by [CUSTOMER ,PRODUCT] of bool

find timeof : matrix indexed by [PRODUCT] of int (0.. nbProducts)

find stackOpened : matrix indexed by [CUSTOMER] of TIMESLOT

find stackClosed : matrix indexed by [CUSTOMER] of TIMESLOT

find isOpenStack : matrix indexed by [CUSTOMER ,TIMESLOT] of bool

find nbStacks : PRODUCT

minimising nbStacks

such that

alldifferent_except(timeof ,0),

forall p1 : PRODUCT . (

(exists p2 : PRODUCT . (

(p1 6= p2) ^
(forall c : CUSTOMER . demand[c,p1] demand[c,p2]))

)) (timeof[p1] = 0)

),

forall p1 : PRODUCT . (

(forall p2 : PRODUCT . (

(p1 6= p2))
!(forall c : CUSTOMER . demand[c,p1] demand[c,p2]))

)) (timeof[p1] > 0)

),

forall c : CUSTOMER . forall p : PRODUCT .

(timeof[p] > 0 ^ demand[c,p])) stackOpened[c] timeof[p],

forall c : CUSTOMER . forall p : PRODUCT .

(timeof[p] > 0 ^ demand[c,p])) stackClosed[c] � timeof[p],

forall c : CUSTOMER . forall t : TIMESLOT .

isOpenStack[c,t] = ((stackOpened[c] t) ^ (t stackClosed[c])),

forall t : TIMESLOT .

nbStacks � (sum c : CUSTOMER . isOpenStack[c,t])

Fig. 15. An improved model.

Proceedings of CSCLP 2011

25

the propagation levels of the used constraints are similar. Some models may take
far more search nodes to solve, yet can be solved faster.

In our experimental results, the fact that the better model runs faster than
the normal model, as long as it needs fewer search nodes demonstrates a clear
gain. Using a partial function variable instead of a total function variable not
only saves from the number of search nodes, but also saves from the actual time
spent during search.

���

����

�����

������

�������

������

������

������

�����	

������

�� ���� �
�� ���� ���� ��� ���� ����

�
�
�
�
��
�
�
�
�

��������

������
������

Fig. 16. Search nodes

6 Conclusion and Future work

We presented a use case for Conjure using the open stacks problem as an
example. This exercise allowed us to discover a new and specific variable rep-
resentation. The new refinement rules are added to the rules database; future
refinements will benefit from these rules without any further work.

Conjure generates multiple models for a given problem specification. We
didn’t discuss how we select a good model out of the generated selection of
models in this paper. This is partly because it was out of the focus of this paper
and partly because we didn’t develop any automated model selection techniques
yet.

Now that Conjure can produce multiple valid constraint models for a given
problem specification and the refinement language is mature enough to encode
new transformations without modifying the internals, our aim is to study model

Proceedings of CSCLP 2011

26

�����

����

��

���

����

�����

������

�������

�� ���� ���� ���� ���� ���� �	�� �
��

�
�
��

��
�
��
��
��
�
�

������

������
������

Fig. 17. Search times

selection; fully automated or assisted. We are also planning to investigate other
problems to capture modelling idioms and enrich our refinement rules database.

Acknowledgements

Ozgur Akgun is supported be a Scottish Informatics and Computer Science
Alliance (SICSA) prize studentship. This research is supported by UK EPSRC
grant no EP/H004092/1.

References

1. B.M.W. Cheng, K. M. F. Choi, J. H. M. Lee, and J. C. K. Wu. Increasing constraint

propagation by redundant modeling: an experience report. Constraints, 4(2):167–
192, 1999.

2. Alan M. Frisch, Warwick Harvey, Chris Je↵erson, Bernadette Mart́ınez-Hernández,

and Ian Miguel. Essence: A constraint language for specifying combinatorial prob-

lems. Constraints 13(3), pages 268–306, 2008.
3. Bernadette Mart́ınez Hernández and Alan M. Frisch. The automatic generation

of redundant representations and channelling constraints. In Trends in Constraint
Programming, chapter 8, pages 163–182. ISTE, May 2007.

4. Andrea Rendl. Thesis: E↵ective Compilation of Constraint Models. PhD thesis,

University of St. Andrews, 2010.

5. Barbara M. Smith and Ian P. Gent. Constraint modelling challenge, 2005. In

conjunction with The Fifth Workshop on Modelling and Solving Problems with

Constraints Held at IJCAI 2005, Edinburgh, Scotland, 31 July, 2005.

Proceedings of CSCLP 2011

27

	csclp2011proceedings
	csclp2011proceedings.pdf
	Binder5.pdf
	papers.pdf
	hoos-abstract.pdf
	schaub-abstract.pdf
	papers.pdf
	paper_12.pdf
	paper_10.pdf
	paper_4.pdf
	paper_8.pdf
	paper_7.pdf
	paper_9.pdf
	paper_3.pdf
	paper_11.pdf
	paper_2.pdf
	paper_1.pdf
	paper_5.pdf
	paper_6.pdf

	author_index.pdf

	body
	papers
	hoos-abstract
	schaub-abstract
	conjure10-1
	openstacks
	paper_4
	paper_8
	paper_7
	paper_9
	paper_3
	paper_11
	paper_2
	paper_1
	paper_5
	paper_6

	author_index

